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A B S T R A C T

Treatment of digital nerve injuries, particularly in case of a gap, is challenging. Recovery of finger

sensitivity is often incomplete and can impair personal and occupational activity. The need for better

nerve regeneration has given rise to alternative treatments such as nerve conduits. This study aimed to

evaluate the safety and efficacy of a conduit of freeze-dried inverted human umbilical cord vessel for

regeneration in digital nerve section. Twenty-three patients with a mean nerve gap of 6.11 mm (range

2–30 mm and static 2-point discrimination (s2PD) > 15 mm underwent surgical repair of digital nerve

section using a nerve regeneration conduit. The primary endpoint was recovery of sensitivity after

conduit implantation. Secondary endpoints comprised progression of pain, functional symptoms,

pressure threshold, hand-specific symptoms and disabilities, and restored innervation. Mean follow-up

was 10.1 � 4.1 months (range 1–14 months). Sensitivity recovered progressively in the months

following implantation. There was a mean decrease of 8.54 mm in s2PD between baseline and last

follow-up (p < 0.001). Complete innervation recovered in 83.3% of cases at last follow-up. Pressure

threshold and hand-related quality of life improved significantly and symptoms due to nerve sectioning

(pain, cold intolerance, hypoesthesia, hyperesthesia) resolved almost completely. There were no safety

issues related to the nerve conduit. These results indicate that freeze-dried inverted human umbilical

vessels can be a safe and effective option as conduit for digital nerve regeneration.
�C 2022 SFCM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Le traitement des lésions des nerfs digitaux, en particulier celles avec perte de substance (PDS), reste un

défi. La récupération de la sensibilité des doigts est souvent incomplète et peut interférer avec les

activités personnelles et professionnelles. La nécessité d’une meilleure régénération a donné lieu au

développement de traitements alternatifs tels que les conduits nerveux. Cette étude visait à évaluer la

sécurité et l’efficacité d’un vaisseau ombilical retourné et lyophilisé d’origine humaine utilisé comme

conduit de régénération pour les sections de nerfs digitaux. Au total, 23 patients présentant une PDS

moyenne de 6,11 mm (intervalle 2�30 mm) et une valeur de discrimination de 2 points statiques

(s2PD) > 15 mm ont été traités chirurgicalement avec le conduit de régénération nerveuse. Le critère

d’évaluation principal était la récupération de la sensibilité après l’implantation du conduit. Les critères

d’évaluation secondaires comprenaient les changements relatifs à la douleur, les symptômes
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ntroduction

Peripheral nerve transection in the hand is a common
ccurrence, with challenging major sensory and motor conse-
uences. When digital nerves are injured, recovery of finger
ensory function is often incomplete. Strategies adopted for
urgical repair depend largely on the size and type of nerve injury.
irect tension-free end-to-end surgical repair is the gold-standard

or reconstruction after complete transection with <5 mm gap,
hereas autologous nerve graft (ANG) is used for longer gaps [1–

]. Although clearly advantageous in terms of biocompatibility,
NG has major drawbacks, including limited availability of donor
erves, harvesting-related complications and donor-site morbidi-
y, mismatch with the size of the injured nerve, potential
ermanent loss of nerve function, and possible occurrence of
ainful neuroma. These limitations have given rise to alternative
trategies for larger injuries, with the development of synthetic or
iological tools used as nerve guidance conduits or scaffolds [3–
2], since it was established that interposing a graft between
roximal and distal nerve stumps ensured better regeneration
1,11–14]. However, synthetic conduits present various disadvan-
ages: they are prone to degradation by inflammation or require
econdary surgery to remove them after nerve regeneration, and in
ome cases rigidity can lead to extrusion. To optimize nerve
egeneration, nerve scaffolds need chemical and physical proper-
ies that mimic their physiological environment. Non-autologous
issues (nerve allograft, biopolymers such as collagen) or autolo-
ous tissues (tendon, muscle, amniotic membranes, umbilical cord
UC) vessels, veins, arteries) show better surgical outcomes [1,14–
3]. Since nerve allograft induces immune reactions, devitalized
roducts are used in combination with collagen conduits: nerve-
onduit type products [23–25]. For digital nerves, outcomes are
imilar to those obtained with autologous vein grafts (AVGs),
ffective in bridging small nerve gaps and improving directional
xon regrowth [5,8,11,15]. However, there are concerns related to
raft size and lumen collapse in > 5 mm gaps. Therefore, AVG is
sed only for digital nerve lacerations with little or no gap. To

mprove nerve repair, conduits combining vein tract with fresh
keletal muscle fibers have been developed [10,26–29]. The
ationale of the muscle-in-vein (MIV) approach is that muscle
revents vein collapse, while the vein wall provides a natural tube

n which axon elongation can occur without spread. All these
evices have similar performances in terms of nerve regeneration
30], with good sensory and motor recovery [19,31,32]. However,
utcomes are worse for >10 mm gaps, when treatment is delayed
ue to infection-related complications, or when the wound is

Vessels enclosed in the human UC have been turned inside-out
and filled with WJ to form a conduit. In some respects, this
resembles an MIV conduit, known to be well tolerated and effective
as a 3D scaffold for sciatic nerve regeneration in rats [34]. The aim
of the present study was to evaluate the efficacy and safety of a
freeze-dried inverted human umbilical cord vessel (iHUCV) in the
treatment of severed digital nerves.

Patients and methods

Patients

Patients aged 18–65 years with 2�20 mm hand nerve gap were
included in the month following injury or accident, and could be
included during emergency treatment. Patients with underlying
motor or sensory disorder, disease compromising healing, vascular
disease leading to reduced blood flow or impaired micro-
vascularization, or drug or alcohol addiction were excluded.

Study design

This phase II prospective open-label non-comparative clinical
trial was conducted in four centers. The protocol and informed
consent forms (including one dedicated to emergency settings)
were reviewed and approved by the institutional review boards of
the study centers. All included patients underwent surgical repair
of peripheral nerve injury by iHUCV (NerVFIX1; TBF, Mions,
France). Baseline characteristics were established at inclusion or at
the 2-week postoperative consultation for patients included and
treated in emergency. Clinical tolerance and sensory and motor
function were assessed at 1 months, 3 months, 6 months and
12 months after nerve repair.

Treatment

The nerve regeneration conduit was made of an allogeneic UC
vessel (vein or artery) turned inside-out [34]. The outer surface was
the vascular wall, the inner lumen surface was residual WJ rich in
physiological proteoglycans. Safety was maximized during
manufacturing according to the European directives for the quality
and safety of human tissues and cells. Deep cleaning, devitalization
and viral inactivation was ensured by chemical treatment;
conservation used freeze-drying, and final product safety was
ensured by sterilization. The iHUCV was supplied as a ready-to-use
dehydrated sterile tube, 0.5–1.5 mm thick, flexible but firm, and

fonctionnels, le seuil de pression, les symptômes et incapacités liés à la section nerveuse ainsi que la

régénération de l’innervation. La durée moyenne de suivi était de 10,1 � 4,1 mois (intervalle 1–14 mois).

La sensibilité a été récupérée progressivement dans les mois suivant l’implantation. Une diminution

moyenne de 8,54 mm du s2PD a été observée entre l’inclusion et la fin de l’étude (p < 0,001). L’innervation a

été complètement récupérée dans 83.3% des cas à la dernière visite. Le seuil de pression et la capacité de la

main dans les activités quotidiennes se sont améliorés de manière significative, tandis que les symptômes

dus à la section nerveuse (douleur, intolérance au froid, hypoesthésie, hyperesthésie) ont diminué à presque

zéro. Aucun événement lié à la sécurité du conduit nerveux n’a été signalé. Ces résultats indiquent que les

vaisseaux ombilicaux humains lyophilisés et retournés peuvent être une option sûre et efficace pour la

régénération des nerfs digitaux.
�C 2022 SFCM. Publié par Elsevier Masson SAS. Cet article est publié en Open Access sous licence CC BY-

NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ssociated with tendon injury [22].
Since perinatal tissues display low immunogenicity, they have

een used in regenerative medicine as allogenic material for more
han a century [33]. UC is a tube-like structure enclosing one vein
nd two arteries buried within a protective glycoprotein-rich
xtracellular matrix called Wharton’s jelly (WJ).
67
available in various lengths and diameters.
All patients were treated with the following procedure. The

nerve gap was measured after debridement, wound cleaning and
recutting of severed nerve ends. The length and inner diameter of
the iHUCV were selected according to the size of the nerve gap and
the nature of the wound. The iHUCV was implanted as nerve
6
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wrapping or nerve conduit (Fig. 1). Wrapping was used when nerve
ends could be sutured: the iHUCV was opened longitudinally and
wrapped around the sutured nerve, and an external running suture
was performed to rebuild the conduit. Nerve conduit was used
when nerve ends could not be directly sutured due to the gap; the
two nerve ends were inserted in the conduit and stabilized by
epineural suture. The iHUCV was rehydrated with physiological
serum after implantation.

Clinical evaluation

The primary efficacy endpoint was recovery of sensitivity
12 months after nerve regeneration conduit implantation. Sensory
recovery was evaluated using the British Medical Research Council
(MRC) score modified by Mackinnon and Dellon [35]. Due to nerve
sectioning, baseline static 2-point discrimination (s2PD) was
greater than 15 mm. Grade S3+ (s2PD = 7–15 mm) indicates
recovery of pain and touch sensitivity, with disappearance of
overresponse. Grade S4 (s2PD < 7 mm) indicates complete
recovery.

Secondary efficacy endpoints comprised progression of pain,
functional symptoms, pressure threshold in the repaired nerve
area, hand-specific symptoms and disabilities, and restored
innervation. Pain was rated by the patients from 0 (no pain) to
10 (worst imaginable pain) on a visual analog scale. Cold
intolerance, hyperesthesia and numbness were graded by the
patients on a scale from 0 (no sensation) to 4 (major sensation).
Pressure threshold was evaluated by the Semmes-Weinstein
monofilament (SWM) test [36]; interpretation is presented in
Table 1. Symptoms and disabilities of the hand were self-reported
by the patients using the QuickDASH questionnaire [37]; final

QuickDASH score, calculated from 11 items, ranges from 0 (no
disability) to 100 (worst possible disability). The Hoffmann-Tinel
(HT) sign [38] was used as an indication of peripheral nerve fiber
regeneration. It was assessed by distal to proximal percussion over
the path of the nerve, and was considered positive when the
patient reported a tingling sensation along the nerve path. Absence
of HT sign indicated complete nerve regeneration. All efficacy
evaluations were made at baseline and at months 1, 3, 6 and
12. Adverse events were monitored and reported throughout the
study.

Statistical analysis

Statistical analyses were performed using R 4.0.2 software (R
Core Team, Vienna, Austria). Normal distribution was analyzed on
Shapiro-Wilk test. A paired Student t-test was used to compare
measurements between groups for variables with normal distri-
bution; otherwise, a Wilcoxon rank-sum test was used. Rejection
of the null hypothesis was defined as a < 0.05 (two-tailed).

Results

Study population

Twenty-five patients for 26 nerve sections were included and
treated. Two nerve sections in two patients were excluded from
efficacy analysis as the main criterion (s2PD) was not evaluated at
inclusion time and during follow-up. Demographic and surgical
techniques are shown in Table 2. Six of the 23 analyzed patients did
not meet all the inclusion and exclusion criteria. For 3 patients, the
time between injury and surgery was >1 month (92, 137 and

Fig. 1. Intraoperative photographs, before suturing, of the iHUCV implanted as nerve wrapping (A) or nerve conduit (B).

Table 1

Semmes-Weinstein monofilament (SWM) interpretation scale.

SWM score 1 2 3 4 5

SWM number 2.83 3.61 4.31 4.56 6.65

Target force (g) 0.07 0.2 2 4 200

Interpretation Normal superficial

sensation

Loss of superficial sensation,

protective sensation intact

Loss of protective sensation,

deep pressure sensation intact

Total loss of

pressure sensation

Residual

sensation
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64 days, respectively). One patient had a nerve gap of 30 mm at
nclusion. One had Raynaud syndrome with peripheral cold
ntolerance, and 1 had chronic alcoholism with signs of peripheral
europathy.

The schedule of the study was impacted by the COVID-19
andemic. Some patients were not able to come to all follow-up
isits. Last follow-up was at a mean 10.1 months (range 1–14
onths; Table 3).

fficacy

Table 4 summarizes the efficacy results. s2PD decreased
rogressively between follow-up consultations. A significant mean
ecrease of 8.54 mm was observed between baseline and last

ollow-up (p < 0.001, two-tailed paired t-test). There was complete
ecovery (s2PD < 7 mm) for 13 nerve sections at last follow-up
54.17%). On the 10-point scale, pain decreased significantly by
.10 points (p < 0.001). All functional symptoms showed significant
ecrease. On the 4-point scale, cold intolerance, hyperesthesia and
umbness decreased by 1.12 (p = 0.012), 1.02 (p = 0.008) and
.46 points (p < 0.001), respectively. The pressure threshold of the

repaired nerve area improved significantly (p < 0.001). Globally,
patients went from having only residual sensation at inclusion
(SWM = 4.78 � 0.56) to restored pressure sensation
(SWM = 2.72 � 0.97). HT sign was absent in 20 of the 24 digits
(83.33%) at last follow-up. The global patient-reported score for
symptoms and disabilities of the hand was 36.49 � 25.15 points at
baseline and decreased to 7.20 � 13.05 points at last follow-up
(p < 0.001).

Safety

One patient (4.3%) developed cubital tunnel syndrome, 1 (4.3%)
developed early local infection, and 1 (4.3%) developed complex
regional pain syndrome (CRPS). These events had no relation with
the graft, and all 3 patients showed sensory recovery.

Discussion

Treatment of nerve transection, particularly with gap, histori-
cally used AVG as a tubular junction [15]. Using vessels as nerve
conduit is an alternative to ANG for the repair of severed hand
nerves [2], described for over 30 years [15] and implemented

able 2
emographic and surgical data.

Number of analyzed patients 23

Number of analyzed nerve sections 24

Gender (% female) 26%

Mean age (range) (years) 38 (19–65)

Right hand involvement 37.5%

Mean length (in mm) of nerve gap at inclusion (range) 6.11 (2–30)

Nerve lesion location

Thumb 4

Index finger 7

Middle finger 5

Ring finger 1

Little finger 7

Time between injury and surgery (in days) (range) 25 (0–264)

Implantation technique (% conduit / % wrap) 43%/57%

able 3
erve repair patient data.

Case n8 Gender Age

(yrs.)

Finger

injured

Gap length

(mm)

Final follow-up

(months)

Final s2DP

(mm)

Final SWM

target force (g)

Final HT

sign

Final

QuickDASH

Comments

F1-01 M 35 LLF 4 12 7 2 no 0.0

F1-02 F 45 LT 4 13 12 2 yes 4.5 Chronic alcoholism with

signs of peripheral neuropathy

F1-03 M 33 LMF 2 13 8 0.07 no 0.0

F1-04 F 41 LMF 3 12 6 0.07 no 0.0

F1-05 M 65 RLF 13 12 6 2 no 2.3

F1-06 M 44 LIF 5 12 6 2 no 4.5

F1-07 M 51 LT 3 12 6 0.2 no 0.0

F1-08 M 22 LLF 3 10 8 0.2 no 0.0

F1-09 F 28 LT 2 12 6 0.2 no 13.6 Raynaud syndrome with

peripheral cold sensation

F1-10 M 19 LLF NR 11 4 0.2 no 0.0

LRF NR 6 0.2 no

F1-11 M 19 LMF 3 6 10 4 no 2.3

F1-12 M 24 RLF 4 1 14 200 no 56.8

F2-01 F 38 RT 8 13 6 2 no 0.0

F2-02 F 48 LLF 10 7 6 2 no 2.3

F2-03 M 40 RIF 3 9 6 2 no 0.0

B1-01 M 60 RIF 7 12 8 2 no 22.7

B1-02 M 23 LIF 30 12 10 2 no 0.0

B1-03 M 52 RLF 5 1 16 4 no 18.2

Table 4
Outcome assessments.

Variable N Mean � SD Significance test

(p-value)

Baseline Last visit

s2PD (mm) 24 16.00 � 0.00 7.46 � 3.08 <0.001

Pain 24 4.56 � 1.97 0.46 � 1.06 <0.001

Functional symptoms:

Cold sensation 24 1.46 � 1.74 0.34 � 0.76 0.012

Hyperesthesia 24 1.43 � 1.57 0.41 � 0.84 0.008

Numbness 24 2.91 � 1.19 0.45 � 0.94 <0.001

SWM (threshold) 18a 4.78 � 0.56 2.72 � 0.97 <0.001

a SWM test not done at baseline for 6 nerve sections.
B2-02 M 48 LMF NR 12 4 0.2 yes 4.5

B2-03 M 24 RIF 3 1 8 0.2 yes 20.5

B2-04 F 30 LIF 4 14 4 2 yes 13.6

B2-05 M 42 RMF NR 13 4 4 no 0.0

B2-06 M 43 RIF NR 12 8 0.2 no 0.0

IF: left index finger; LLF: left little finger; LMF: left middle finger; LRF: left ring finger; LT: left thumb; NR: not reported; RIF: right index finger; RLF: right little finger; RMF:

ight middle finger; RT: right thumb.
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mainly to overcome the morbidity associated with donor sensory
nerve harvesting. In addition to being widely available, veins have
structural advantages as a source of conduit material [5,14,18,21],
the 3 layers of the laminin/collagen-rich basal membrane
providing a more adequate microenvironment for directional
axon regrowth [17]. Vein walls are also resilient enough to act as a
barrier against scar ingrowth, and their permeability allows
nutrient diffusion. However, there are limitations related to the
size of the graft (particularly for larger median, ulnar and radial
nerves) and to lumen collapse for >5 mm gaps, impeding nerve
regeneration [14–16]. Therefore, AVGs are used only in digital
nerve lacerations with little or no gap. To limit collapse, one
strategy consists in filling veins with muscle (MIV conduit)
[10,26]. The usefulness of fresh muscle fibers is that, in addition to
preventing the vein from collapsing, the muscle’s basal lamina
enhances the proliferation and migratory properties of resident
Schwann cells [10,11,23,30], while the vein walls prevent
dispersion of muscle fibers and scar tissue invasion. Thus, MIV
conduits are a good alternative to traditional ANGs for nerve gaps
exceeding the graft length limit typical of other types of
tubulization [9,26–29]. There are a few high-quality randomized
controlled studies and systematic reviews on the use of AVG and
MIV as nerve regeneration conduits for the treatment of digital
nerve transection, reporting promising functional recovery com-
pared with direct nerve repair or ANG [5,15,16,18,20–22,26–
28,39,40]. Chui et al. [15] published a prospective clinical
evaluation of AVG as nerve conduit for �3 cm distal sensory
nerve defects, compared to direct repair and ANG. At last follow-up
(mean: 27 months [6;72]), s2PD for direct repair, ANG and AVG
was 7.40 � 1.54, 9.00 � 1.00 and 11.10 � 3.40 mm, respectively,
indicating superiority of direct nerve repair in palmar digital nerve
section. Significant symptom relief and satisfactory recovery of
sensory function were systematically observed with all three
techniques. Twenty years later, Rinker et al. [18] published a
prospective randomized study comparing synthetic woven poly-
glycolic acid conduits versus AVG for the reconstruction of > 4 mm
digital nerve gaps (mean: 10 mm [4;25]). Mean s2PD at 12 months
was comparable for both (7.5 � 1.9 and 7.6 � 2.6 mm, respectively),
indicating similar sensory recovery. MIV was effectively employed as
a nerve guide for secondary nerve reconstruction of segmental nerve
injuries in Marcoccio et al.’s study [27], with a mean gap of 22 mm
[10;34]. s2PD and QuickDASH scores were assessed. At � 18 months’
follow-up, 66.7% of the reconstructed nerves were classified as
excellent or good on the modified MRC scale (S3+, S4) and mean
QuickDASH score was 22.5. A few years later, Manoli et al. [28]
conducted a retrospective clinical trial comparing regeneration after
reconstruction of 10�60 mm digital nerve injuries with MIV
conduits, ANG or direct suture. No significant differences between
repair techniques were found on s2PD and SWM tests up to
58 months’ follow-up. The authors also emphasized that ANGs incur
harvesting-related complications, with reduced sensitivity at the
donor-site in 71.4% of cases, compared to only 7.1% with MIV
conduits.

The iHUCV has tissue characteristics similar to an MIV graft. The
structure needs to be inverted to make it more resistant to
collapsing. Moreover, it provides a lumen free of venous valves,
circumventing the disadvantage of AVG, which is prone to obstruct
regenerating axons and to neuroma formation [2,14]. The final
product is a porous structure composed of a vascular outer surface
of endothelium (tunica intima), a smooth or double-smooth

being widely available from UC donors, its biomaterial characte-
ristics offer adequate mechanical properties, with sufficient
flexibility and stability to protect the injured nerve area and
prevent scarring, yet firm enough to preclude risk of collapse
during nerve regeneration. Since its allogeneic/xenogeneic cellular
antigens have been removed by decellularization, the iHUCV is
fully biocompatible and resorbs progressively during nerve
regeneration [33], avoiding long-term inflammation with no need
for secondary surgery [5,13]. It is supplied freeze-dried and sterile,
in various lengths and diameters (2�3 mm UC artery or 5�7 mm
UC vein) easily adaptable to the nature and the size of the severed
nerve: longitudinal or perpendicular cut, either to wrap the nerve
or as a tubular conduit for � 20 mm gaps.

The present findings indicate that iHUCV can help recovery of
sensitivity in the 12 months following surgical nerve repair. At last
follow-up, 95.8% of the reconstructed nerves were between S3+
and S4 on the modified MRC scale and recovery was complete (S4)
in 54.17% of cases. The one reconstructed nerve that did not reach
grade S3+ or S4 was the one followed for the shortest period
(1 month). Mean s2PD at last follow-up was 7.46 � 3.08 mm.
Compared to other studies, sensitivity recovery was therefore
comparable to that obtained with MIV [27,28] and superior to that
with AVG [15,18]. In addition, all functional symptoms and pain
progressively improved, with very few clinical signs of nerve section
at last follow-up. Cold intolerance, hyperesthesia, numbness and pain
decreased by 76.7%, 71.3%, 84.5% and 89.9%, respectively, between
baseline and last follow-up. Signs of peripheral nerve fiber
regeneration, defined by absence of HT sign, were observed in
83.3% of patients. Mean QuickDASH score was 7.20 � 13.05 at last
follow-up, indicating minimal disability of the hand. Those results are
at least comparable to those reported with MIV in other studies
[27,28].

In terms of vessel conduit safety, reported adverse events were
not specifically related to the product, since they cannot be
dissociated from trauma and surgery: local infection, healing
issues such as wound inflammation or delayed haeling. Reports of
graft failure or extrusion, neuroma formation and other compli-
cations are quite inconsistent. For MIV grafts, no adverse events
were reported by Manoli et al. [28], while 2 painful neuromas
(failure of gap repair) were reported by Marcoccio et al. [27]; in this
phase II study, 3 events were reported by the investigators, none
related to the iHUCV.

Conclusions

In this study, iHUCV devitalized allograft to repair severed
digital nerves with � 20 mm gaps provided excellent sensory and
functional recovery. The iHUCV has the tissue characteristics of an
MIV conduit and shows similar efficacy, with results superior to
those reported for AVG. Moreover, it was well tolerated and no
specific complications occurred. Thus, iHUCV is a promising
alternative to conventional treatments for long peripheral nerve
gaps, offering many of the advantages expected from a biological
nerve conduit.
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